Low Power Robust Early Output Asynchronous Block Carry Lookahead Adder with Redundant Carry Logic
نویسندگان
چکیده
منابع مشابه
Robust Asynchronous Carry Lookahead Adders
Novel gate level synthesis of robust asynchronous carry lookahead adders based on the notion of section carry is discussed in this paper. For a range of higher order addition operations, the carry lookahead adder is found to exhibit reduced latency than the carry ripple version by 38.6%. However, the latter occupies less area and dissipates less power compared to the former by 37.8% and 17.4% r...
متن کاملLow depth, low power carry lookahead adders using threshold logic
This paper describes a low power threshold logic-gate based on a capacitive input, charge recycling differential sense amplifier latch. The gate is shown to have low power dissipation and high operating speed, as well as robustness under process, temperature and supply voltage variations. This is followed by the main result, which is the development of a novel, low depth, carry lookahead additi...
متن کاملA logarithmic-depth quantum carry-lookahead adder
We present an efficient addition circuit, borrowing techniques from the classical carry-lookahead arithmetic circuit. Our quantum carrylookahead (qcla) adder accepts two n-bit numbers and adds them in O(log n) depth using O(n) ancillary qubits. We present both in-place and out-of-place versions, as well as versions that add modulo 2n and modulo 2n − 1. Previously, the linear-depth ripple-carry ...
متن کاملA High Performance, Low Area Overhead Carry Lookahead Adder
Adders are some of the most critical data path circuits requiring considerable design effort in order to “squeeze” out as much performance gain as possible. Many adder designs manage high performance by reducing the delay of the critical path, an effort that results in high area overhead in most cases. In this paper we present a carry lookahead adder (CLA) with a prediction scheme that results ...
متن کاملAn Asynchronous Early Output Full Adder and a Relative-Timed Ripple Carry Adder
This article presents the design of a new asynchronous early output full adder which when cascaded leads to a relative-timed ripple carry adder (RCA). The relative-timed RCA requires imposing a very small relative-timing assumption to overcome the problem of gate orphans associated with internal carry propagation. The relative-timing assumption is however independent of the RCA size. The primar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics
سال: 2018
ISSN: 2079-9292
DOI: 10.3390/electronics7100243